


Aldec's ALINT™ design analysis tool identifies critical design issues early in the design stage of ASIC and FPGA designs. The tool points out coding style, functional, and structural problems in Verilog®, VHDL, and mixed-language designs, and prevents them from spreading into the downstream stages of your design flow. Sophisticated static analysis techniques uncover a variety of hidden bugs at the right time when cost and efficiency of modifications are optimal, and highly reduce the risks of redundant design iterations and costly re-spins.

Top Features

- Design Flaws and Bugs are Detected During Early RTL Design Phase
- Phase-Based Linting Methodology Guided Design Refinement Approach
- Industry-Leading Design Practices in STARC, RMM, and DO-254 Libraries
- Highly Customizable Framework for Rapid Automation of Design Expertise
- Integrated Debugging Environment for Convenient Results Analysis
- VHDL, Verilog®, and Mixed-Language Designs Support
- Linux and Windows® 7/Vista/XP/2003 32/64 Bit Support
- C++ Based API for Custom Rules Implementation

Methodology

There are two common problems with most design rule checking tools: 1. Too many reports per session (a natural occurrence when designs are checked against hundreds of rules), and 2. A high level of "noise" caused by false or irrelevant violations. Aldec's answer to these common problems is Phase-Based Linting (PBL) methodology. User productivity and overall efficiency of the entire linting process is significantly improved as PBL methodology puts clear priorities into the design refinement process and minimizes the number of iterations.

Rule Libraries

ALINT's extensive design rule libraries are based on the best practices such as STARC and RMM that have been accumulated by the industry-leading companies over the years of FPGA and ASIC designs development. The combined knowledge of Aldec customers and in-house design experts are captured in libraries such as Aldec Basic and DO-254. The absolute majority of rules can be configured based on specific project needs (C++ based API is also available and allows implementing fully custom and unique rules).

Framework

ALINT features highly customizable and intuitive framework that seamlessly integrates into existing environments and helps to automate design guidelines. Visual design management tools are integrated with the comprehensive knowledge base and provide an at-a-glance approach to capturing and execution of a company's own design expertise. Once the design rule checking policy customization and linting process execution is complete, the user may then take the benefits of the integrated debugging environment and its intuitive tools for detected design issues analysis and cross-probing between the violation reports and source code.

FFATURES PRODUCT CONFIGURATIONS

Supported Languages	ALINT
Supported Languages	ALINI
Verilog® IEEE 1364 (1995, 2001 and 2005)	•
VHDL IEEE 1076 (1987, 1993, 2002 and 2008)	
Rule Libraries	
Aldec Basic (VHDL and Verilog)	•
STARC® (VHDL or Verilog)	Option
DO-254 (VHDL or Verilog)	Option
RMM (VHDL and Verilog)	Option
User-Defined Rules	•
Technology	
Pattern Matching Engine	•
Instances Classification	
FPGA Primitives Support	•
CDC Analysis and Reporting	
Design Refinement Methodology	
Phase-Based Linting (PBL)	•
Flow Manager	
Quality Scoring	•
Flow Editor	•
Critical Rules	•
Results Analysis and Reporting	
Standalone Reporting and Documentation	•
Violation Viewer	
Exclusions Management	•
Cross Probing To Source Code	•
Violation Reports Comparison	•
Productivity Tools	
Design Management	•
Quick Launch Panel	•
Configuration Viewer	•
Rule Description Viewer	•
Rule Plug-in Viewer	•
Ruleset Editor	•
Rule Parameters Editor	•
Policy Editor	
Supported Platforms	
Windows® 7/Vista/XP/2003 32/64 bit	•
Linux 32/64 bit	

Practical Fields of Use

ALINT assists with all the activities that take place during FPGA and ASIC design processes. All essential design objectives are addressed starting from the level of a new RTL block to system integration level when all blocks, including newly developed and existing ones, are put together.

Development

At the level of new RTL development, ALINT verifies that all the essential design goals are achieved. Syntax and naming conventions start the list of conditions that must be met by a new RTL block. Subsequent checks answer important questions about whether the block will simulate and synthesize correctly. Once simulation and synthesis issues are cleared, mismatches between the RTL and gate-level simulations are then checked, and clocks and resets are validated for correct design.

Reuse

When reusing existing components, it is always a good idea to make sure that they are free from any non-standard design techniques. A component structure is checked for adaptation issues – at this level it is important to ensure that reused code does not violate any critical rules that may have safety impact on the target design.

Integration

At the system integration level, the tool verifies that all individual blocks are implementation-ready and also checks for inter-block issues. The chip-level rules search for traceability of signals, indicate missing or incorrect synchronizers for signals that are transferred between different clock domains, point out scan chain management issues, and check many other design patterns.

Headquarters - US 2260 Corporate Circle Henderson, NV 89074 USA

Email: sales@aldec.com

Mercia House 51 The Green, South Bar

Banbury, OX16 9AB United Kingdom

Email: sales-eu@aldec.com Email: sales-il@aldec.com

1 Haofe Street Kadima 60920 Israel

Shinjyuku Estate Bldg. 9F 1-34-15, Shinjyuku, Shinjyuku-ku Tokyo 160-0022 Japan

Email: sales-jp@aldec.com

Suite 2004 BaoAn Building #800 DongFang Road

Phone: +86.21.6875.2030 Email: info@aldec.com.cn

#2145 17th Main 2nd Cross, HAL 2nd Stage PuDong District Indiranagar Shanghai City, 200122, P.R. China Bangalore, 560008, India

Email: sales-in@aldec.com

No. 37, Section 2 Liujia 5th Road Hsinchu County 302 Zhubei City, Taiwan

Phone: +91.80.3255.1030 Phone: +886.3.6587712

